[1] M. A. Lancaster and J. A. Knoblich, “Organogenesis in a dish: Modeling development and disease using organoid technologies,” Science (80-. )., vol. 345, no. 6194, 2014, doi: 10.1126/science.1247125.
[2] Y. Sasai, M. Eiraku, and H. Suga, “In vitro organogenesis in three dimensions: Self-organising stem cells,” Dev., vol. 139, no. 22, pp. 4111–4121, 2012, doi: 10.1242/dev.079590.
[3] X. Qian, H. Song, and G. Ming, “Brain organoids: advances, applications and challenges,” Development, vol. 146, no. 8, p. dev166074, 2019.
[4] J. M. Rosenbluth et al., “Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages,” Nat. Commun., vol. 11, no. 1, pp. 1–14, 2020.
[5] T. Sato et al., “Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche,” Nature, vol. 459, no. 7244, pp. 262–265, 2009, doi: 10.1038/nature07935.
[6] T. Takebe et al., “Vascularized and functional human liver from an iPSC-derived organ bud transplant,” Nature, vol. 499, no. 7459, pp. 481–484, 2013, doi: 10.1038/nature12271.
[7] M. Huch et al., “In vitro expansion of single Lgr5 + liver stem cells induced by Wnt-driven regeneration,” Nature, vol. 494, no. 7436, pp. 247–250, 2013, doi: 10.1038/nature11826.
[8] R. P. Fordham et al., “Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury,” Cell Stem Cell, vol. 13, no. 6, pp. 734–744, 2013, doi: 10.1016/j.stem.2013.09.015.
[9] J. O. Múnera et al., “Differentiation of Human Pluripotent Stem Cells into Colonic Organoids via Transient Activation of BMP Signaling,” Cell Stem Cell, vol. 21, no. 1, pp. 51-64.e6, 2017, doi: 10.1016/j.stem.2017.05.020.
[10] H. Uchida et al., “A xenogeneic-free system generating functional human gut organoids from pluripotent stem cells,” JCI Insight, vol. 2, no. 1, pp. 1–13, 2017, doi: 10.1172/jci.insight.86492.
[11] S. V. Kumar et al., “Kidney micro-organoids in suspension culture as a scalable source of human pluripotent stem cell-derived kidney cells,” Dev., vol. 146, no. 5, 2019, doi: 10.1242/dev.172361.
[12] Z. Li et al., “3D Culture Supports Long-Term Expansion of Mouse and Human Nephrogenic Progenitors,” Cell Stem Cell, vol. 19, no. 4, pp. 516–529, 2016, doi: 10.1016/j.stem.2016.07.016.
[13] B. R. Dye et al., “In vitro generation of human pluripotent stem cell derived lung organoids,” Elife, vol. 2015, no. 4, pp. 1–25, 2015, doi: 10.7554/eLife.05098.
[14] J. Drost et al., “Organoid culture systems for prostate epithelial and cancer tissue,” Nat. Protoc., vol. 11, p. 347, Jan. 2016.
[15] L. Huang et al., “Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids,” Nat. Med., vol. 21, no. 11, pp. 1364–1371, 2015, doi: 10.1038/nm.3973.
[16] T. R. Broda, K. W. McCracken, and J. M. Wells, “Generation of human antral and fundic gastric organoids from pluripotent stem cells,” Nat. Protoc., vol. 14, no. 1, pp. 28–50, 2019, doi: 10.1038/s41596-018-0080-z.
[17] M. Boretto et al., “Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening,” Nat. Cell Biol., vol. 21, no. 8, pp. 1041–1051, 2019, doi: 10.1038/s41556-019-0360-z.
[18] Y. Saito et al., “Development of a functional thyroid model based on an organoid culture system,” Biochem. Biophys. Res. Commun., vol. 497, no. 2, pp. 783–789, 2018, doi: 10.1016/j.bbrc.2018.02.154.
[19] H. Sakaguchi et al., “Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue,” Nat. Commun., vol. 6, 2015, doi: 10.1038/ncomms9896.
[20] M. A. Lancaster et al., “Cerebral organoids model human brain development and microcephaly,” Nature, vol. 501, no. 7467, pp. 373–379, 2013, doi: 10.1038/nature12517.
[21] S. Kim et al., “Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids,” Proc. Natl. Acad. Sci. U. S. A., vol. 166, no. 22, pp. 10824–10833, 2019, doi: 10.1073/pnas.1901572116.
[22] J. van der Vaart and H. Clevers, “Airway organoids as models of human disease,” J. Intern. Med., 2020.
[23] M. Urbischek, H. Rannikmae, T. Foets, K. Ravn, M. Hyvönen, and M. de la Roche, “Organoid culture media formulated with growth factors of defined cellular activity,” Sci. Rep., vol. 9, no. 1, pp. 1–11, 2019.
[24] A. Merenda, N. Fenderico, and M. M. Maurice, “Wnt signaling in 3D: Recent advances in the applications of intestinal organoids,” Trends Cell Biol., vol. 30, no. 1, pp. 60–73, 2020.
[25] H. Xu, X. Lyu, M. Yi, W. Zhao, Y. Song, and K. Wu, “Organoid technology and applications in cancer research,” J. Hematol. Oncol., vol. 11, no. 1, p. 116, 2018.
[26] M. J. Kratochvil, A. J. Seymour, T. L. Li, S. P. Paşca, C. J. Kuo, and S. C. Heilshorn, “Engineered materials for organoid systems,” Nat. Rev. Mater., vol. 4, no. 9, pp. 606–622, 2019, doi: 10.1038/s41578-019-0129-9.
[27] S. Florian, Y. Iwamoto, M. Coughlin, R. Weissleder, and T. J. Mitchison, “A human organoid system that self-organizes to recapitulate growth and differentiation of a benign mammary tumor,” Proc. Natl. Acad. Sci., vol. 116, no. 23, pp. 11444–11453, 2019.
[28] H. Wu and B. D. Humphreys, “Single Cell Sequencing and Kidney Organoids Generated from Pluripotent Stem Cells,” Clin. J. Am. Soc. Nephrol., vol. 15, no. 4, pp. 550–556, 2020.
[29] K. Ongena, C. Das, J. L. Smith, S. Gil, and G. Johnston, “Determining cell number during cell culture using the scepter cell counter,” JoVE (Journal Vis. Exp., no. 45, p. e2204, 2010.
[30] T. Grabinger et al., “Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy,” Cell Death Dis., vol. 5, no. 5, pp. e1228--e1228, 2014.
[31] D. E. Rothschild, T. Srinivasan, L. A. Aponte-Santiago, X. Shen, and I. C. Allen, “The ex vivo culture and pattern recognition receptor stimulation of mouse intestinal organoids,” JoVE (Journal Vis. Exp., no. 111, p. e54033, 2016.
[32] H. E. Francies, A. Barthorpe, A. McLaren-Douglas, W. J. Barendt, and M. J. Garnett, “Drug Sensitivity Assays of Human Cancer Organoid Cultures,” in Organoids: Stem Cells, Structure, and Function, K. Turksen, Ed. New York, NY: Springer New York, 2019, pp. 339–351.
[33] Y. Fujimichi, K. Otsuka, M. Tomita, and T. Iwasaki, “An Efficient Intestinal Organoid System of Direct Sorting to Evaluate Stem Cell Competition in Vitro,” Sci. Rep., vol. 9, no. 1, pp. 1–9, 2019.
[34] C. P. Santos et al., “Urothelial organoids originating from Cd49f high mouse stem cells display Notch-dependent differentiation capacity,” Nat. Commun., vol. 10, no. 1, pp. 1–17, 2019.
[35] K. E. Boonekamp et al., “Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures,” Proc. Natl. Acad. Sci., vol. 116, no. 29, pp. 14630–14638, 2019.
[36] T. McCray, Z. Richards, J. Marsili, G. S. Prins, and L. Nonn, “Handling and assessment of human primary prostate organoid culture,” JoVE (Journal Vis. Exp., no. 143, p. e59051, 2019.
[37] M. Dossena et al., “Standardized GMP-compliant scalable production of human pancreas organoids,” Stem Cell Res. Ther., vol. 11, no. 1, pp. 1–12, 2020.
[38] J. Mullenders et al., “Mouse and human urothelial cancer organoids: A tool for bladder cancer research,” Proc. Natl. Acad. Sci., vol. 116, no. 10, pp. 4567–4574, 2019.
[39] J. T. Neal et al., “Organoid Modeling of the Tumor Immune Microenvironment,” Cell, vol. 175, no. 7, pp. 1972-1988.e16, 2018, doi: 10.1016/j.cell.2018.11.021.
[40] K. K. Dijkstra et al., “Generation of Tumor-Reactive T Cells by Co-culture of Peripheral Blood Lymphocytes and Tumor Organoids,” Cell, vol. 174, no. 6, pp. 1586-1598.e12, 2018, doi: 10.1016/j.cell.2018.07.009.
[41] T. Takebe et al., “Massive and Reproducible Production of Liver Buds Entirely from Human Pluripotent Stem Cells,” Cell Rep., vol. 21, no. 10, pp. 2661–2670, 2017, doi: 10.1016/j.celrep.2017.11.005.
[42] N. Phan et al., “A simple high-throughput approach identifies actionable drug sensitivities in patient-derived tumor organoids,” Commun. Biol., vol. 2, no. 1, pp. 1–11, 2019, doi: 10.1038/s42003-019-0305-x.
[43] G. Rossi, A. Manfrin, and M. P. Lutolf, “Progress and potential in organoid research,” Nat. Rev. Genet., vol. 19, no. 11, pp. 671–687, 2018, doi: 10.1038/s41576-018-0051-9.
[44] J. Drost and H. Clevers, “Organoids in cancer research,” Nat. Rev. Cancer, vol. 18, no. 7, pp. 407–418, 2018, doi: 10.1038/s41568-018-0007-6.
[45] T. Sato and H. Clevers, “Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications,” Science (80-. )., vol. 340, no. 6137, pp. 1190–1194, 2013.
[46] H. Gehart et al., “Identification of Enteroendocrine Regulators by Real-Time Single-Cell Differentiation Mapping,” Cell, vol. 176, no. 5, pp. 1158-1173.e16, 2019, doi: 10.1016/j.cell.2018.12.029.
[47] J. Mariani et al., “Modeling human cortical development in vitro using induced pluripotent stem cells,” Proc. Natl. Acad. Sci. U. S. A., vol. 109, no. 31, pp. 12770–12775, 2012, doi: 10.1073/pnas.1202944109.
[48] H. Hu et al., “Long-Term Expansion of Functional Mouse and Human Hepatocytes as 3D Organoids,” Cell, vol. 175, no. 6, pp. 1591-1606.e19, 2018, doi: 10.1016/j.cell.2018.11.013.
[49] D. Wilkinson et al., “Development of a Three-Dimensional Bioengineering Technology to Generate Lung Tissue for Personalized Disease Modeling,” Stem Cells Transl. Med., vol. 4, pp. 1–11, 2016, doi: 10.5966/sctm.2016-0192.
[50] B. S. Freedman et al., “Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids,” Nat. Commun., vol. 6, no. May, pp. 1–13, 2015, doi: 10.1038/ncomms9715.
[51] V. Iefremova et al., “An Organoid-Based Model of Cortical Development Identifies Non-Cell-Autonomous Defects in Wnt Signaling Contributing to Miller-Dieker Syndrome,” Cell Rep., vol. 19, no. 1, pp. 50–59, 2017, doi: 10.1016/j.celrep.2017.03.047.
[52] N. Sachs et al., “A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity,” Cell, vol. 172, no. 1–2, pp. 373-386.e10, 2018, doi: 10.1016/j.cell.2017.11.010.
[53] M. Takasato et al., “Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis,” Nature, vol. 526, p. 564, Oct. 2015.
[54] W. R. Proctor et al., “Utility of spherical human liver microtissues for prediction of clinical drug-induced liver injury,” Arch. Toxicol., vol. 91, no. 8, pp. 2849–2863, 2017, doi: 10.1007/s00204-017-2002-1.
[55] T. Zhou et al., “High-Content Screening in hPSC-Neural Progenitors Identifies Drug Candidates that Inhibit Zika Virus Infection in Fetal-like Organoids and Adult Brain,” Cell Stem Cell, vol. 21, no. 2, pp. 274-283.e5, 2017, doi: 10.1016/j.stem.2017.06.017.
[56] S. F. Boj et al., “Forskolin-induced swelling in intestinal organoids: An in vitro assay for assessing drug response in cystic fibrosis patients,” J. Vis. Exp., vol. 2017, no. 120, pp. 1–12, 2017, doi: 10.3791/55159.
[57] F. Schutgens et al., “Tubuloids derived from human adult kidney and urine for personalized disease modeling,” Nat. Biotechnol., vol. 37, no. 3, pp. 303–313, 2019, doi: 10.1038/s41587-019-0048-8.
[58] W. Dieterich, M. F. Neurath, and Y. Zopf, “Intestinal ex vivo organoid culture reveals altered programmed crypt stem cells in patients with celiac disease,” Sci. Rep., vol. 10, no. 1, pp. 1–10, 2020.
[59] O. Kopper et al., “An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity,” Nat. Med., vol. 25, no. 5, pp. 838–849, 2019, doi: 10.1038/s41591-019-0422-6.
[60] S. F. Roerink et al., “Intra-tumour diversification in colorectal cancer at the single-cell level,” Nature, vol. 556, no. 7702, pp. 437–462, 2018, doi: 10.1038/s41586-018-0024-3.