[1] A. Grada, M. Otero-Vinas, F. Prieto-Castrillo, Z. Obagi, and V. Falanga, “Research techniques made simple: analysis of collective cell migration using the wound healing assay,” J. Invest. Dermatol., vol. 137, no. 2, pp. e11--e16, 2017.
[2] A. Stamm, K. Reimers, S. Strauß, P. Vogt, T. Scheper, and I. Pepelanova, “In vitro wound healing assays--state of the art,” BioNanoMaterials, vol. 17, no. 1–2, pp. 79–87, 2016.
[3] L. G. Rodriguez, X. Wu, and J.-L. Guan, “Wound-healing assay,” in Cell Migration, Springer, 2005, pp. 23–29.
[4] J. E. N. Jonkman et al., “An introduction to the wound healing assay using live-cell microscopy,” Cell Adh. Migr., vol. 8, no. 5, pp. 440–451, 2014.
[5] A. D. der Meer, K. Vermeul, A. A. Poot, J. Feijen, and I. Vermes, “A microfluidic wound-healing assay for quantifying endothelial cell migration,” Am. J. Physiol. Circ. Physiol., vol. 298, no. 2, pp. H719--H725, 2010.
[6] Y. Wei et al., “A tubing-free microfluidic wound healing assay enabling the quantification of vascular smooth muscle cell migration,” Sci. Rep., vol. 5, p. 14049, 2015.
[7] C. R. Keese, J. Wegener, S. R. Walker, and I. Giaever, “Electrical wound-healing assay for cells in vitro,” Proc. Natl. Acad. Sci., vol. 101, no. 6, pp. 1554–1559, 2004.
[8] R. Riahi, Y. Yang, D. D. Zhang, and P. K. Wong, “Advances in wound-healing assays for probing collective cell migration,” J. Lab. Autom., vol. 17, no. 1, pp. 59–65, 2012.
[9] J.-Y. Lin, K.-Y. Lo, and Y.-S. Sun, “A microfluidics-based wound-healing assay for studying the effects of shear stresses, wound widths, and chemicals on the wound-healing process,” Sci. Rep., vol. 9, no. 1, pp. 1–11, 2019.
[10] A. P. Looney and M. Bhattacharya, “Fibroblast Gap-closure Assay-Microscopy-based in vitro Assay Measuring the Migration of Murine Fibroblasts,” Bio-protocol, vol. 9, no. 16, 2019.
[11] S. Martinotti and E. Ranzato, “Scratch Wound Healing Assay,” 2019.
[12] S. T. Johnston, E. T. Shah, L. K. Chopin, D. L. S. McElwain, and M. J. Simpson, “Estimating cell diffusivity and cell proliferation rate by interpreting IncuCyte ZOOMTM assay data using the Fisher-Kolmogorov model,” BMC Syst. Biol., vol. 9, no. 1, p. 38, 2015.
[13] C. N. Ramirez et al., “Validation of a high-content screening assay using whole-well imaging of transformed phenotypes,” Assay Drug Dev. Technol., vol. 9, no. 3, pp. 247–261, 2011.
[14] T. Gebäck, M. M. P. Schulz, P. Koumoutsakos, and M. Detmar, “TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays: Short Technical Reports,” Biotechniques, vol. 46, no. 4, pp. 265–274, 2009.
[15] K. A. Main, C. M. Mikelis, and C. L. Doçi, “In Vitro Wound Healing Assays to Investigate Epidermal Migration,” 2019.
[16] J. C. Yarrow, Z. E. Perlman, N. J. Westwood, and T. J. Mitchison, “A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods,” BMC Biotechnol., vol. 4, no. 1, p. 21, 2004.
[17] K. Kobiyama, R. Saigusa, and K. Ley, “Vaccination against atherosclerosis,” Curr. Opin. Immunol., vol. 59, pp. 15–24, 2019.
[18] A. Alves et al., “Xanthan Gum--Konjac Glucomannan Blend Hydrogel for Wound Healing,” Polymers (Basel)., vol. 12, no. 1, p. 99, 2020.
[19] X. Wang, C. C. Decker, L. Zechner, S. Krstin, and M. Wink, “In vitro wound healing of tumor cells: inhibition of cell migration by selected cytotoxic alkaloids,” BMC Pharmacol. Toxicol., vol. 20, no. 1, pp. 1–12, 2019.